Mobile Agents for Reliable Migration in
Networks

DongChun Lee!, Byeongkuk Jeon?, and Yongchul (Robert)Kim?

! Dept. of Computer Science Howon Univ., Korea
ldch@sunny.howon.ac.kr
2Dept.of Office Automation WonJu Nat’l College, Korea
3Embedded System Team LGIS RD Center, Korea
robertkim@Igis.com

Abstract. Mobile agents are autonomous objects that can migrate from
one node to other node of a computer network. Due to communication
nodes failures, mobile agents may be blocked or crashed even if there
are other nodes available that could continue processing. To solve it, we
propose a scheme with the path reordering and backward recovery to
guarantee migration of mobile agents in networks.

1 Introduction

Mobile agents are autonomous objects that can migrate from node to node of a
computer network and provide to users which have executed themselves using

databases or computation resources of hosts connected by network. To migrate
the mobile agent, it is needed a virtual place so-called the mobile agent system
to support mobility [1]. Many prototypes of mobile agent systems have been pro-
posed in several different agent systems such as Odyssey [2], Aglet [3], AgentTCL

, Mole[5], and so forth. However, most systems are rarely ensuring its migration
for a fault of communication nodes or a crash of hosts to be caused during
touring after a mobile agent launches. That is, when there are some faults such
as a destruction of the nodes or the mobile agent systems, mobile agents may
be destroyed to block or orphan state even if there are available other nodes
that continue processing. Because of the autonomy of mobile agents, there is no
natural instance that monitors the progress of agent execution.

2 Previous Mobile Agent For Migration

Mobile agents are migrated autonomously according to the relevant routing
schedule, and then accomplished their goals. Figure 1 depicts how a node reposi-
tory can use for implementation instead of transaction message queue for agents.
Assume that an agent moves from a node to the consecutive node along the path
N1 N2...N(k-1) Nk (where Ni is a network node, Hi is a host, Ri is an agent
repository). As an agent may visit the same node several times Ni and Nj (1<=i,

K.S. Leung, L.-W. Chan, and H. Meng (Eds.): IDEAL 2000, LNCS 1983, pp. 344-B51, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Mobile Agents for Reliable Migration in Networks 345

j<=k) may denote the same or different nodes. Assume further that an agent
is stored in a repository when it is accepted by the agent system for execution.
Except Nk, each other node performs the following sequence of operations on
Transaction Ti such as Get (agent); Execute (agent); Put (agent); Commit. Get
removes an agent from the node’s repository. Execute performs the received
agent locally. Put places it on the repository of the host that will be visited the
right next time. Three operations are performed within a transaction and hence
consisted of the atomic unit of work.

Agent
Launch

T1: I?;);;e;ute T2 :—ii;iecute
Fig.1.A migration path of a mobile agent.

In Fig. 1, we assume to happen a failure in a particular node Ni within the
migration path of the mobile agent. Though the node Ni of the host Hi of node
Ni lives, the agent can’t migrated. Inversely, though the node Ni can be com-
municated with the previous node N (i-1), the agent can’t occasionally migrate
if the host Hi does not operate in the agent system. In the above cases, the
agent never arrives by the last node Nk. the agent at previous host Hi-1 needs
to receive user’s assertion. In the worse case, if a shared host on the multiple
agents launched occurs to crash on executing (launching), the agents will block
or destroy.

3 Proposed Scheme

We describe an scheme for the agent system to support reliable migration of
mobile agents even if it dose happen some failures hosts on the cluster of com-
puter networks. The scheme adapts 'fault types’ such that agents are not able
to migrate more continuously.

3.1 Reordering of The Whole Path

The mobile agent is impossible to migrate to the destination node by the fault of
node or host crash. Fig. 2(a) supposes that there is a migration path correspond-
ing with an agent’s routing schedule and some faulty nodes, such as N3, N4, and
N7. An agent migrates and executes from node N1 to N2 sequentially, but it is
blocked at the host of node N2 until the node N3 is recovered. If the node N3
dose not recovered, the agent may be orphan or destroyed by the particular host.
To solve this situation is for the agent to skip the fault node N3 that includes
on the migration path and move the address of node N3 to the last one of the
migration path. Hence, the node N2 successfully connects the next other node
N4 without any fault. As the same method is also applied to other nodes, the

346 D. Lee, B. Jeon, and Y. Kim

agent’s migration path has reordered. This solution changes the previous migra-
tion path by connecting with normal nodes except that some nodes have the
particular fault. Afterward, the agent retries to connect each certain fault node
after it waits for the time-stamp to assign by the mobile agent system. If the
certain fault node is recovering during the time-stamp, the agent succeeds to the
migration. Otherwise, the address of the fault node will be discarded.Fig. 2(b)
shows that all migration path for the mobile agent is changed by this scheme.

Agent
Launch

Agent
Launch

(b)

Fig.2. Faults of nodes on a migration path and reordering

The Path Reordering executes connecting to communicate with the mobile agent
system. If the agent doesn’t connect the destination node, it succeeds with con-
necting the right next node, after the failed address is moved to the last one
of routing table and that will be retried to connect about the node. When it
does reconnect each failed destination address, it does wait for the time-stamp
to be assigned by the mobile agent system to connect. If it does fail again, it
does ignore this address, and repeat to connect the next fault node. And then,
if it does adapt to more than twice times failed node, a mobile agent may be
occurred loophole for connection. So it limits to retry. Although it is connected,
if each host of nodes errors the mobile agent system, it is adapted equally. In
this way, algorithm 1 offers automatically to reorder the migration path.

Algorithm 1.Path Reordering

For each agent’s routing-table {
extract a target address and fail_checked information;
if (no more a target address)backward multicastes’Agent_Fire’
signal to successful_target nodes;
if(is it a fail_checked_address) {
wait the agent during some system_timestamp;
try to connect Socket to the address;

Mobile Agents for Reliable Migration in Networks 347

if (success){ call goAgent;
exit;
} else { notify to user the address is unavailable;
ignore the address;
T}
else if (not a fail_checked_address) {
try to connect Socket to the destination node;
if (success) { call goAgent;
exit;
} else { notify to user;
move the current failed_address to last in the routing-table;
set the fail_checked information;

11}

3.2 Backward Recovery

In Fig. 3, we suppose that migrated agents execute autonomously at the host H5.
If the host H5 of node N5 crashes, all agents at that host are blocked or destroyed.
To prevent it, when an agent migrates after it ends its job at a previous host, the
agent’s clone leave equally itself at that host. Then, the clone is unconditionally
waiting for an acknowledge signal ’ACK’ that reaches from the next host. If
the signal ’ACK’ doesn’t reach within the time-stamp from the next host H5,
the cloned agent waiting for at the host H4 has automatically activated since
it resolves to any hindrance. Then, it is passed by the node N5 and hops to
the next node N6. If the migrated agent faults at the host H6 on execution, it
will be repeated the same method. However, the running agent in a host H5 is
destroyed by being clashed, and at the same time if the prior node N4’s host
occurs succeeding fault, the cloned agent has already copied the prior host H3
wakes up and re-runs. This is so-called Backward Recovery.

Wakeup and Hop

-

. . . v
Waltlné) Waltlné) Waltlné) Waiting

N Clone Clone Clone g Clone ;

‘\ ‘\‘\ Agent_Timestamp

= Migration Time+Running Time

send 'ACK' + Timestamp

Fig.3.An example of Backward Recovery

The Backward Recovery is as follows: The agent system leave the clone of the
agent being already passed at all hosts from source to current node and each
clone is waiting during it’s own time-stamp. Here in, the time-stamp of each
clone is maximum at source, the next will be less reflecting the migration and
execution time of the prior, and so forth. Since an agent is launch, it’s time-
stamp accumulates informing to every clone of the prior hosts it’s own moving
and running time before it depart for the current host. Therefore, clones are

348 D. Lee, B. Jeon, and Y. Kim

waiting during the time-stamp. Each clone spontaneously revives and redoes
the path reordering regarding that host as clashed if none received any signal
from next host. At the last node’s host, the agent system broadcasts a signal
'Agent Fire’ to be destined all copied of the agent except the faulty nodes and
failed hosts until reaching the destination.

Algorithm 2.A Backward Recovery

Wating Clones Check {
for each sleeped_Clone
if (empty a Clone_timestamp) notify to user;
call wakeup Clone; }
goAgent {
send the agent;
wait the agent’s ’ACK’ signal during send_timestamp;
if (’ACK’) { clones the agent;
call sleepAgent; }
else call wakeupAgent;
} arriveAgent { send ’ACK’ to the previous_node;
execute the agent;
} sleepAgent {
for each cloned_agent {
add agent_timstamp to system_ time-stamp;
add the agent to the sleeped_list;
sleep the agent;
}
} wakeupClone {
for the sleeped_list find a cloned_agent;
remove it from the sleep_list;
if (’Agent_Fire’)remove the cloned_agent;
else {
move the current failed_address to last in the routing-table;
set the fail_checked information;
call arrangePath at the algorithm 1;
}

4 An Implementation

Our scheme is implemented in the JAva Mobile Agent System (JAMAS) that we
developed. As shows in Fig. 4, the JAMAS consists of Graphic User Interface,
Agents Mobile Service component, Agents Execution Environment component,
and Agents Repository to provide the naming transparency of agents. In addi-
tion, it may be executing one more systems within a host

Mobile Agents for Reliable Migration in Networks 349

I Out
\+ {/ - agents = BIEIPY

Mobile

Service Management
Service
Agents
Repository

| | K

‘ Agent_Loader -{Agent_Info

JAVA VM & Environment

Security
Manager

launch

Workstation Workstation

NS N
Manager

NE h NE b NE a NE ¢
Fig.5. A routing path having a fault NE b

We show to experiment with an agent which manages some NE (network ele-
ments). The following figures show the progress that the sample agent as a role
of MIB (Management Information Base) browser is migrated and executed ac-
cording to the routing schedule. Fig. 5 depicts the routing path of the sample
agent such as NEh, NEb, NEa, NEc, and we assume faulty at the host NEb. The
network manager fetches the prepared agent and specifies routing addresses of
it to migrate. So, clicking the 'Go’ button on the manager’s window to launch
it, the agent starts on a tour to get the MIB information of each NE on behalf
of the network manager.

Fig.6 shows screen shots of results of the mobile agent. The agent tracer
GUI shows what nodes have faulty and how to migrate continuously in the
network.The executed agent at the host IP address 172.16.53.21 of the first node
NEh does migrate to the second node NEb. Due to a particular fail, the agent has
been hopped and migrated at the third node NEa. On completing the execution
at the last node NEc, it results information of reconnection to the faulted node
NED on the reordered path. Finally, Fig.7 realizes execution of the agent at each
NE. Fig. 7 (a) as a screen capture of the host NEh, shows hopping by connection

350 D. Lee, B. Jeon, and Y. Kim

failure at the next NEb after the launched agent normally progresses. That is,
due to fail the host, the agent passes to next one. Thereafter, Fig. 7(b), (c)
capture executing of the agent at the hosts NEa, NEc. Then it is adapted to the
our scheme. Therefore, the agent has toured for all nodes having no faults before
that it does re-connect with the fault nodes.

[4gent Tracer

Agent Running Time(MSec.) [mibrowse : 6100 4]
|
|
o [|
Tonr State Messages

mibrowse is arrived at Wed Dec 08 10:29:49 GMT+09:00 1999 from the sun,’l?2.lﬁ.5|.99ﬂ
mibrowse is arrived at Wed Dec 08 10:29:49 GMT+09:00 1999 from the 172,16,53.20:4000
-—>> But, we will send back and hop, <<--—-
-—»> Now, the current agent_state is,.,, <

mibrowse is arrived at Wed Dec 08 10:29:50 GMT+09:00 1999 from the Iinnél?Z.lB.Eill]I
mibrowse is arrived at Wed Dec 08 10:29:52 GMT+09:00 1999 from the ¥in38/172.16.53.i
mibrowse is arrived at Wed Dec 08 10:29:54 GMT+09:00 1999 from the 172,16,53.20:4000
-—»> 50, we will discard above target {((-—-

-—»> Now, the current agent_state is ,,, {{-—

v
{ ’

Fig.6.Agent Tracer GUI

(a) AScreen shot of executing at the NEh

Mobile Agents for Reliable Migration in Networks 351

B4 172165199

L=
M0 BEE HIYD ZEH
>» Running agent is mibrowse A
---» load fAgent : mibrouse
---> Return in CLASS |

Response received: Well done *!

¥» In System, " mibrowse " Exe. time = 531

>» Successful send to 172.16.53.100:11618 ¢

>» Roaming agents/messages is " jbk mibrowse "

== fucceedly send the next 172.16.53.100:11018 == v

KN ap

(b) screen shot of executing at the NEa

- 172 16,53 100

N0 EIE HOLI EeZH

»» Running agent 1is mibrouse A
--->» load Agent : mibrouse

--->» Return in CLASS

Response received: Well done *! J
»> In System, ™ mibrowse ™ Exe. time = 521
»> Roaming agents/messages is " jbk mibrowse
»> Successful send to 172.16.53.20:4006 *
Varning * fail the Node/Host ---> Second hopping right now *¢

(c) A screen shot of executing at the NEc and attempting migration of the
second at the NEb
Fig.7.Fault-tolerable execution of a mobile agent at each NE

5 Conclusions

We discuss a fault-tolerable scheme with the path reordering and backward
recovery to ensure the migration of mobile agents in networks. The proposed
scheme not only affords to avoid faults of communication nodes or hosts of mo-
bile agents, but also affects to agents’ life span.

References

1. OMG, ”Mobile Agent Facility Interoperability Facilities Specification(MAF)”, OMG

2. General Magic, ”Odyssey”, and URL: http://WWW.genmagic.com/agents/

3. IBM,” The Aglets Workbench”, URL: http://www.trl.ibmco.jp/aglets

4. Robert S.G, "AgentTCL: A Flexible and Secure Mobile-Agent System”, TR98-327,
Dartmouth Col. June 1997

5. J.Baumann,” A Protocol for Orphan Detection and Termination in Mobile Agent
Systems”, TR-1997-09,Stuttgart Univ. Jul.,1997.

	Mobile Agents for Reliable Migration in Networks
	1 Introduction
	2 Previous Mobile Agent For Migration
	3 Proposed Scheme
	3.1 Reordering of The Whole Path
	3.2 Backward Recovery

	4 An Implementation
	5 Conclusions
	References

